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Abstract
The rich personal information contained in speech signal can
lead to privacy leakage and unfair prediction for speech based
technology. In this work, we propose a feature-scoring vari-
ational autoencoder (FS-VAE) to handle these issues by per-
forming attribute alignment for speech representation learning.
FS-VAE performs attribute alignment by using attention-based
scoring machines guided by two additional penalty terms. Af-
ter obtaining the attribute-aligned representation, we can then
choose and mask the nodes containing specific attribute of in-
terest based on the requirement in the downstream tasks. We
evaluate our methods on tasks of PP-SER (identity-free emo-
tion recognition) and PP-SV (emotion-less speaker verifica-
tion). Our proposed method achieves better utility maintenance
and competitive privacy protection compared to the most recent
attribute-aligned representation learning method.
Index Terms: speech representation, feature scoring, privacy,
fair, attribute alignment

1. Introduction
Speech is the most natural human communication medium that
has motivated a thriving effort in the development of speech re-
lated technology [1, 2, 3, 4, 5]. The richness of information
in human’s speech signal [6] while useful but also concerning.
As speech signal contains rich personal information [7], e.g.,
identity, gender, and emotion, users may unexpectedly disclose
these sensitive attributes while utilizing speech based services.
On the other hand, unfairness may occur as data-driven ap-
proaches naturally inherit biases, e.g., gender bias [8] or racial
discrimination [9]. As effort being devoted toward achieving
trustworthy AI, devising strategy to obtain a speech represen-
tation that mitigates biases and privacy concerns directly at the
front-end representation is becoming the prevalent approach.

Recently, many works utilize adversarial strategy to elimi-
nate a pre-defined attribute in the speech representation to deal
with these issues [10, 11, 12]. While promising, adversarial
learning suffers from inflexibility, i.e., one has to retrain an en-
coder to obtain a specific attribute-removed representation un-
der each setting of an application. Hence, in a recent work,
Huang et al. proposed an attribute-aligned speech representation
learning method [13], which aligns the task-specific attributes in
a particular order for the speech representation, e.g., emotion re-
lated (without speaker identity) dimensions are concentrated in
the top half of the hidden nodes where speaker identity (with-
out emotion) locate in the bottom half. By aligning attributes
along node dimensions, one can flexibly choose and mask the
hidden nodes depending on the application scenarios. Specifi-
cally, Huang et al. [13] proposed a layered representation varia-
tional autoencoder (LR-VAE) to handle a two-attribute scenario
(emotion and speaker identity) and demonstrated competitive

privacy-preserving performances with a single encoder (as com-
pared to two for adversarial learning approaches).

However, since LR-VAE depends on manually designed
two monotonic dropout functions to align two attributes in the
hidden nodes, crafting such functions that extend to three or
four or even more attributes can be complicated if not infea-
sible. In this work, we propose a feature-scoring variational
autoencoder (FS-VAE) to achieve attribute alignment. Instead
of designing functions to align attributes, we guide the at-
tribute aligned representation learning process by using task-
specific attention-based scoring machines along with two addi-
tional losses, i.e., attention penalty loss and diversity loss. This
approach separates task-specific attributes to distribute distinc-
tively on different latent dimensions. In downstream tasks, one
can choose and mask those dimensions needed to maintain a
high main-task recognition performance and protect privacy by
removing those un-needed dimensions according to the learned
attention weights from these scoring machines.

In this work, we present two task definitions: a privacy-
preserving speech emotion recognition (PP-SER) that protects
identity in SER and a privacy-preserving speaker verifica-
tion (PP-SV) that protects emotion in SV. We evaluate our
method on the MSP-Podcast [14]. Comparing to LR-VAE, the
current state-of-the-art attribute-aligned representation learning
method, our proposed FS-VAE achieves competitive PP-SER
performance (1.86% WFS better, 2.26% EER worse) and im-
proved PP-SV performance (1.08% EER better, 0.30% WFS
worse). We also observe that FS-VAE concentrates the task-
specific attributes to a fewer number of nodes.

2. Methodology
2.1. Dataset description
We evaluate our method on two tasks, PP-SER and PP-SV. For
evaluation, an emotional speech dataset with multiple speakers
is required. Hence, we utilize the MSP-Podcast corpus [14], one
of the largest emotional corpus with many speakers. In total, the
MSP-Podcast contains 33262 speaking turns amounting to 56
hours. In this work, in order to compare fairly to the previous
work [13], we perform 5-class emotion classification: neutral,
angry, sad, happy and disgust. The distribution of the 5 emo-
tion classes are: neutral: 53.05%, angry: 8.81%, sad: 3.95%,
happiness: 27.10%, and disgust: 7.09%. We used the standard
splits in Release 1.4 that contains 610 speakers in training set,
30 speakers in development set, and 50 speakers in testing set.
Note that the speakers in each set are disjoint.

2.2. Feature extraction
We apply wav2vec2.0 [15], a self-supervised speech represen-
tation trained by masking the speech input and solving con-
trastive task, as input feature. Wav2vec2.0 can be seen as an uni-



Figure 1: An illustration of our proposed FS-VAE. Note that Zemo−free stands for emotion-free representation, Zid−free stands for
identity-free representation, and FSM stands for feature scoring machine.

versal front-end speech embedding and has achieved outstand-
ing results across numerous downstream applications [16, 17].
Specifically, we extract wav2vec2.0 embedding by the released
pre-trained model [18], wav2vec2-base, that was trained on the
LibriSpeech [19]. Notice that the output of wav2vec2.0 is frame
based. We apply average pooling along the time axis to obtain
a 768 dimensional feature vector for each utterance.

2.3. Attribute-aligned learning strategy
Attribute-aligned learning strategy aims to learn an encoder
which forces task-specific information to condense and distinc-
tively distribute on specific node dimensions. In this work, we
propose a feature-scoring variational autoencoder (FS-VAE) to
achieve attribute-alignment, including VAE as the representa-
tion learning backbone, task-specific feature-attention mecha-
nism, with two designated loss terms, i.e., attention loss and
diversity loss.

We apply VAE [20] as backbone for disentangled represen-
tation learning, which factorizes the input feature into indepen-
dent latent dimension. The loss function of VAE is defined as:

LV AE = −Eq(z|x)[log p(x|z)] +DKL(q(z|x)∥p(z)) (1)
Here, DKL(∥) stands for the non-negative Kullback-Leibler di-
vergence, which encourages the distribution of the latent dimen-
sion to be close to an isotropic Gaussian.

2.3.1. Feature-scoring attention mechanism
To perform attribute-selection in downstream tasks, we require
a mechanism that distributes the task-specific information dis-
tinctively, i.e., encouraging each node to be responsible for a
single attribute. We employ an attention-based mechanism, i.e.,
feature-scoring machines (FSM) [21, 22], on the latent vector
to capture the attribute-specific information. Define the FS-
VAE latent code as z ∈ RF and a scoring vector s ∈ RF ,
where 0 ≤ si ≤ 1 for i ∈ {0, . . . , F − 1}. During FS-VAE
training, a weighted feature vector is generated by z ′ = s ∗ z,
where ∗ denotes an element-wise product, and then fed into the
classifier for attribute-specific information extraction. During
the optimization step, the dimensions of the latent code with
higher scores for emotion attribute will be updated more when
back-propagating emotion classification loss, (hence, contain-
ing more emotion-related information), and vice versa. In this
work, two FSMs are trained to capture the emotion-related at-
tribute and identity-related attribute, respectively.

Further, to purify the latent dimensions after attribute align-
ment, we apply Gradient Reversal Layer (GRL) [23]. We re-
strict the reversed gradients to affect those nodes with signifi-
cant importance to the particular task. During training, we input

a masked feature vector z̃ = m ∗ z to the discriminator, where
the mask vector m is generated by a threshold function f(s):

mi = f(si) =

{
1, si ≥ θt

0, si < θt
(2)

Here, θt represents the threshold value for the designated task t.
Node-specific adversarial learning forces the latent dimension
with critical importance to the designated attribute carry “pure”
information.

2.3.2. Additional losses
The sensitive attributes, i.e., emotion and identity, can be cor-
related, the distribution of the scoring vectors from two vanilla
FSMs are highly overlapping. Therefore, we design additional
constraints to ensure each node is distinctively responsible for
a single attribute. We integrate two different losses, attention
penalty loss and diversity loss, to guide the attention weights
for attribute-alignment. Attention penalty loss is a regular-
ization term that encourages dissimilarity of score vectors be-
tween different tasks to prevent redundancy [24]. We define
a score matrix S ∈ R|T|×F , where each row of the matrix is
a l2-normalized score vector ŝt corresponding to an attribute
t ∈ T. Note that T is the attribute set with |T| attributes, where
|T| = 2 in this work. Attention penalty loss is defined as:

Latt = ∥(SST − I)∥F (3)

Here ∥ · ∥F stands for the Frobenius norm of a matrix and I ∈
R|T|×|T| is an identity matrix. The element sij in SST is the
cosine similarity between ŝi and ŝj . As the diagonal elements
are always equal to 1, we subtract an identity matrix to exclude
the diagonal elements in loss calculation. Since non-diagonal
elements contribute positive values to the penalty term when the
scores are non-orthogonal, through minimization, it encourages
dissimilarity between attribute-specific FSM scores.

Diversity loss is another loss used to enhance the intra-class
compactness and inter-class separability in the representation
space. In this work, we utilize the additive-margin softmax
(AM-Softmax) [25], where the classes are the attributes in our
case. AM-Softmax imports angular margin into softmax, which
forces the model to learn between-class large-margin represen-
tations. The diversity loss is derived as:

Ldiv =

−1

N |T|

N∑
i=1

|T|∑
t=1

log
es(Ŵ

T
yt

ẑti−m)

es(Ŵ
T
yt

ẑti−m) +
∑|T|

j=1,j ̸=yt
esŴ

T
j ẑti

(4)

where N is the number of samples, ẑti is the weighted feature
vector related to attribute t, and Ŵ is the last fully connected



Table 1: Privacy-preserving performance presented in WFS (%)
and EER (%) for SER and SV respectively, where PP stands
for privacy-preserving. Superscript ∗ shows p-value < 0.05,
comparing to the proposed method (FS-VAE) in the last row.

Method Origin PP-SER PP-SV
WFS EER WFS EER WFS EER

Wav2vec2.0 56.73 12.77 55.81∗ 21.69∗ 55.08∗ 12.96∗

A-VAE - - 53.22∗ 35.40∗ 38.44∗ 20.70∗

D-VAE 53.89 12.50 52.35∗ 31.21∗ 38.75∗ 18.24∗

LR-VAE[13] 54.20 14.26 53.25∗ 34.74∗ 36.22 17.42∗

W-VAE - - 52.46∗ 34.64∗ 40.72∗ 17.70∗

FS-VAE 54.33 13.68 55.11 32.48 36.52 16.34

layer. Note that scaling factor s and margin m are hyperpa-
rameters. This loss ensures that the weighted vectors related to
different attributes are separated and condensed on their respec-
tive vector spaces. In summary, the complete loss function for
FS-VAE is defined as:

Loverall = LV AE + Latt + Ldiv

+ Lemo + Lid + Lemo−adv + Lid−adv (5)

where Lemo and Lid represents the classification loss; and
Lemo−adv and Lid−adv represents the adversarial loss.

2.4. Masking attributes for recognition tasks
In downstream tasks, we first obtain an attribute-aligned repre-
sentation by the FS-VAE encoder. Then, task-specific scoring
machine FSMt is applied to rank the importance of each node
related to task t. With the scores, it is straightforward to perform
attribute-selection by masking the dimensions i where si > θt.
For example, to protect identity in PP-SER, we mask the nodes
with identity scores greater than θid.

3. Experiments
3.1. Experiment setup
The FS-VAE model structure is defined as follows: the encoder
and decoder are multi-layer perceptrons (MLP) with two fully
connected layers modelling the mean and log variance of the
latent code. We train two MLP classifiers on emotion recogni-
tion and speaker verification tasks, and two MLP discriminators
for adversarial GRL learning. We select PReLU as activation
function. Moreover, two FSMs are built using MLP. We apply
Adam optimizer with learning rate 5e−4 and batch size 128 for
training. Also, weight decay 1e−6 is added to stabilize the train-
ing process. The complete loss function is defined in equation
5. We use mean squared error loss for reconstruction loss, and
cross entropy loss for both classification and adversarial loss.

Weighted f-score (WFS) is used to evaluate the perfor-
mance of SER, and equal error rate (EER) is used to evaluate
the performance of SV. We optimize the hyperparameters on
the development set and present results on the test set. In this
work, we study the following two setups:
PP-SER: Privacy-preserving emotion recognition that aims to
protect speaker identity while preserving SER performance
(WFS should be high, and EER should also be high).
PP-SV: Privacy-preserving speaker verification that aims to
hide the emotion while maintaining the SV performance (EER
should be low, and WFS should also be low).

Also, we test the statistical significance of the difference be-
tween different methods’ performance. By pairing the proposed
method results with different baseline methods and model-
variations, we then use Wilcoxon signed-rank test to obtain the
p-value for paired difference test. The results are shown in table

Figure 2: The performance curves in the masking experiment.
Note that the y-axis of SER curves are WFS, and EER for SV.
For LR-VAE, we mask in bottom-up order in PP-SER, and top-
down order in PP-SV. For FS-VAE, we mask from the dimension
with higher scores.

1 and table 2, where the superscript ∗ indicates a statistically
significant difference (p < 0.05).

3.1.1. Baseline methods
Here, we describe baseline representation learning methods to
compare with our proposed FS-VAE:
Wav2vec2.0: Apply original wav2vec2.0 embedding for SER
and SV model training. Extract the pre-final layer of SER (SV)
model for PP-SER (PP-SV) task.
A-VAE: Apply adversarial learning method [11] using GRL to
remove identity (emotion) attributes for PP-SER (PP-SV).
D-VAE: Apply disentangled representation learning, which di-
vides the latent vector into attribute-specific regions. Mask the
particular region to achieve privacy protection.
LR-VAE: Proposed method in [13], the most recent SOTA
attribute-aligned speech representation learning method.
W-VAE: Apply the weighted latent vector for downstream tasks
without attribute-selection (a model variant of FS-VAE).

3.2. Result and analysis
3.2.1. Privacy-preserving performance
Our goal is to protect a particular sensitive attribute while main-
taining the main task utility. Comparing to other baselines, our
proposed FS-VAE achieves the best performances (PP-SER:
55.11% WFS, 32.48% EER; PP-SV: 16.34% EER, 36.52%
WFS) with improved utility and competitive privacy protection.
There are a couple observations to note. The first row in table
1 shows that wav2vec2.0 embedding achieves promising results
on both tasks of SER and SV, which demonstrates it’s capabil-
ity as an informative universal front-end. More interestingly,
when we extract the pre-final layer of the SER and SV mod-
els to examine the PP-SER and the PP-SV results. The results
show that the embedding, even when training for a particular
attribute recognition, still contain significant information about
other sensitive attributes leading the issue of privacy leakage.

Firstly, we compare the performances to the adversarial rep-
resentation learning, a prevalent method used for privacy pro-
tection. The result is shown in the A-VAE row (table 1). For
PP-SER, although FS-VAE achieves a little worse identity pro-
tection (an increase of 2.92% EER), it better maintains the SER
performance (an increase of 1.89% WFS ). On the other hand,
for PP-SV, FS-VAE outperforms the A-VAE on both SV per-
formance (a drop of 4.36% EER) and emotion protection (an
increase of 1.92% WFS). Note that A-VAE requires scenario-



specific encoders, i.e., retraining an encoder for different pro-
tection settings, while FS-VAE requires just a single encoder.

Secondly, we compare our proposed FS-VAE with the
SOTA attribute-aligned representation learning method, LR-
VAE (the LR-VAE row in table 1). For PP-SER, FS-VAE
achieves a competitive result. Although FS-VAE performs
slightly worse on identity protection (an increase of 2.26%
EER), it results in a better emotion recognition performance
(an increase of 1.86% WFS). On the other hand, for PP-SV,
FS-VAE shows obvious improved results of better utility main-
tenance (a drop of 1.08% EER) and slightly worse privacy pro-
tection results (a drop of 0.30% WFS). FS-VAE has competitive
PP-SER results and improved PP-SV performance when com-
pared to LR-VAE. Note that, FS-VAE is more flexible than LR-
VAE in the sense that it can be extended to multiple attribute
settings by simply adding additional rows in attention penalty
loss and more classes in diversity loss.

Lastly, we compare FS-VAE to disentangled representation
learning (D-VAE) and weighted vector without attribute selec-
tion (W-VAE). The result is shown in the D-VAE and W-VAE
row of table 1 respectively. When comparing to the D-VAE, we
observe that FS-VAE achieves better utility maintenance (an in-
crease of 2.76% WFS, a drop of 1.90% EER better) and privacy
protection (a drop of 1.27% EER, an increase of 2.23% WFS)
for both PP-SER and PP-SV. When comparing to the W-VAE,
W-VAE achieves comparable privacy protection as our method
though FS-VAE obtains better utility maintenance (an increase
of 2.65% WFS, a drop of 1.36% EER). These results highlight
the importance of attribute alignment and node masking.

3.2.2. Analysis of attribute-alignment strategy
We conduct a masking experiment to study the effectiveness of
feature scoring machine (FSM) for attribute alignment. The us-
age of the two loss functions guides the attribute-alignment and
concentrates the task-specific attributes on particular nodes. We
compare the results to the layered dropout strategy [13]. The ex-
periment procedure is as follow: first, we encode input features
into latent vectors with 128 dimensions, and sort the dimension
by the value of score vector; next, we divide the sorted dimen-
sion into 16 groups. During masking, for each step, we mask an
additional group of nodes with highest scores; then, the masked
latent vectors are applied to two tasks: emotion recognition and
speaker verification. For example, in the 1st step, 8 latent di-
mension with highest scores are masked, while the remaining
120 dimension are applied to both SER and SV models. For
LR-VAE, we conduct the same analysis but mask the latent vec-
tor from one end to the other end, i.e., the emotion-related end
or the identity-related end [13].

We observe the identity-protection emotion recognition
task in figure 2, the upper PP-SER row. Comparing the emotion
recognition curves (WFS), both LR-VAE and FS-VAE main-
tain high SER performance as the masking progress moves on,
while FS-VAE maintains SER performance better at the 15th

step, with only one group left (8 dimension). On the other hand,
we can see that the speaker verification curve (EER) of FS-VAE
has a rapid increase at the beginning (2nd and 3rd step) of the
experiment. It shows that the few top-scored identity-related
nodes contains a high portion of speaker identity information
with little emotion-related information.

Further, we study the emotion-protection speaker verifica-
tion task in figure 2, the lower PP-SV row. For the EER curves,
the downward trend of FS-VAE is smoother than LR-VAE (util-
ity maintenance). We also observe that LR-VAE experiences an
early significant performance drop (12th and 13thstep), while

Table 2: Ablation study results. Privacy-preserving perfor-
mance presented in WFS (%) and EER (%) for SER and SV
respectively. Note that ✓ means to include the corresponding
component, while − means to exclude the component. Super-
script ∗ shows p-value < 0.05, comparing to proposed method.

Components PP-SER PP-SV

Att-Loss Div-Loss WFS EER WFS EER

− − 40.01∗ 39.49∗ 40.47∗ 37.06∗

✓ − 54.15 31.84∗ 39.28∗ 16.50
− ✓ 52.33∗ 33.88∗ 39.99∗ 22.36∗

✓ ✓ 55.11 32.48 36.52 16.34

FS-VAE has a more gentle downward slope. For WFS curves
(privacy protection), we see a rapid performance drop at the
first few steps (2nd step) of the experiment indicating that by
masking just a few nodes, the emotion-related information in
the remaining representation has also effectively been deleted.

3.2.3. Ablation study
We perform ablation study to investigate the effectiveness of the
two loss terms, attention penalty and diversity loss. We re-train
the FS-VAE with different combinations of these two loss, and
apply the latent code for two privacy-preserving scenarios, PP-
SER and PP-SV. The results are shown in table 2.

Firstly, we study the baseline case, i.e., training without the
two penalty terms. The poor utility maintenance (40.01% WFS,
37.06% EER) shows that without explicit constraints, the two
attributes are highly overlapping on similar set of nodes result-
ing in poor performances. Next, we study the case when apply-
ing attention penalty loss only, which is designed to make the
attribute-specific scores distinct. The improved utility mainte-
nance (14.14% WFS better, 20.56% EER better) demonstrates
that the inclusion of attention penalty loss is key in the align-
ment. On the other hand, we study the case of applying diver-
sity loss, which enhances the inter-task separability and intra-
class compactness in the weighted vectors. The result shows
that using diversity loss only loosely encourage the task-specific
attributes to distribute on different dimensions, but the con-
straint is not strong enough as compared to attention penalty
loss. Lastly, we observe the case when applying both loss func-
tions where it achieves the best privacy-preserving performance
(PP-SER: 55.11% WFS, 32.48% EER; PP-SV: 16.34% EER,
36.52% WFS); the diversity loss, while not enough by itself, can
act as an auxiliary term that improve the overall performances.

4. Conclusions
In this work, we propose an attention-based attribute aligned
representation learning strategy to achieve flexible speech rep-
resentation for privacy protection. Comparing to previous meth-
ods, it better maintains the utility and achieves competitive per-
formance on PP-SER and improves performance on PP-SV. We
also show that the two losses separates task-specific attributes
and guides the alignment learning process without explicitly
defining dropout functions. These losses enable scoring ma-
chines to measure the attribute-specific importance of each di-
mension and naturally provides a flexible mechanism to select
and protect target sensitive attributes. In the future, since our
proposed method is extendable to operate in multiple attributes
setting, we will immediately evaluate on a proper database with
multiple attributes. Moreover, we will generalize our approach
from using an aggregated feature vector to time series modeling,
and further explore multimodality, such as speech and language,
for learning speech representation.
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